

Course Syllabus

1	Course title	Classical Mechanics 2
2	Course number	0332352
3	Credit hours	(3, 0)
5	Contact hours (theory, practical)	(48, 0)
4	Prerequisites/corequisites	0302351
5	Program title	Physics
6	Program code	0302
7	Awarding institution	University of Jordan
8	School	Science
9	Department	Physics
10	Course level	Third Year
11	Year of study and semester(s)	Third , First Semester
12	Other department(s) involved in teaching the course	Non
13	Main teaching language	English
14	Delivery method	X Face to face learning Blended Fully online
15	Online platforms(s)	<u>K</u>Moodle ☐ Microsoft Teams ☐ Skype ☐ Zoom ☐ Others
16	Issuing/Revision Date	10/02/2023

ame: Ahmad S Masadeh	Contact hours: Sunday Monday 11 -12
Office number:12	Phone number: 22065
Email: ahmad.masadeh@ju.edu.jo	

18 Other instructors:

None

19 Course Description:

Lagrangian mechanics; Hamiltonian mechanics; dynamics of systems of particles; dynamics of rigid bodies; coupled oscillators.

20 Course aims and outcomes:

A- Aims:

3

B- Students Learning Outcomes (SLOs):

For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to:

SLO (1) Master professionally a broad set of knowledge concerning the fundamentals in the basic areas of physics: Classical Mechanics, Electrostatics and Magnetism, Quantum Mechanics, Thermal Physics, Optics, Theory of Special Relativity, Mathematical Physics, Electronics.

SLO (2) Apply knowledge of mathematics and fundamental concepts in the basic areas of physics to identify and solve physics related problems.

SLO (3) Utilize computers and available software in both data collections and data analysis.

SLO (4) Utilize standard laboratory equipment, modern instrumentation, and classical techniques to design and conduct experiments as well as to analyze and interpret data.

SLO (5) Develop a recognition of the need and ability to engage in life-long learning.

SLO (6) Demonstrate ability to use techniques, skills, and modern scientific tools necessary for professional practice.

SLO (7) Communicate clearly and effectively in both written and oral forms.

SLO (8) Apply proficiently team-work skills and employ team-based learning strategies.

SLO (9) Apply professional and ethical responsibility to society.

Upon successful completion of this course, students will be able to:

Program SLOs	SLO								
CourseSLOs	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
 Demonstrate proficiency in mathematical concepts needed for a proper understanding of classical mechanics. 	✓		✓				✓		
 Developing skills in analytical reasoning and problem-solving, including identifying and simplifying relevant physical principles and choosing appropriate mathematical methods. 	✓	✓			~				
3. Understanding the principles of rotational motion, including torque, angular momentum, and the moment of inertia.					~				
4. Understanding the motion of systems of particles and rigid bodies, including the equations of motion and the conservation laws of energy and momentum.	✓								
5. Understanding the principles of Lagrangian and Hamiltonian mechanics, including the concept of action and the variational principle.			>			>			
6. understand and apply concepts of non- inertial frames of reference									
7. Understand the concept of central force a Derive Kepler's laws.						Ō			04

4

مركز الاعتماد وضمان الجودة وعنمان الجودة

Week	Lecture	Торіс	Intended Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous/ Asynchronous Lecturing	Evaluation Methods	Resources
	7.1	Center of Mass and Linear Momentum of a System						
	7.2	Angular Momentum and Kinetic Energy of a System						
1	7.3	Motion of Two Interacting Bodies: The Reduced Mass						
	7.5	Collisions						
	7.6	Oblique Collisions and Scattering: Comparison of Laboratory and Center of Mass Coordinates						
	7.7	Motion of a Body with Variable Mass: Rocket Motion						
2	8.1	Center of Mass of a						

		Rigid Body.						
	8.2	Rotation of Rigid Body About a Fixed Axis: Moment of inertia						
	8.3	Calculation of the Moment of inertia						
	8.4	The Physical pendulum						
	8.5	The Angular Momentum of a rigid body in Laminar Motion.						
	8.6	Examples of Laminar Motion of a Rigid Body						
	8.7	Impulse and Collisions involving Rigid Body						
Week	Lecture	Торіс	Intended Learning Outcome	Learning Methods(Face to Face/Blended/ Fully Online)	Platform	Synchronous/ Asynchronous Lecturing	Evaluation Methods	Resources
3	9.1	Rotation of Rigid Body about an						

		Arbitrary			
		Axis.			
		Principle Axis			
	9.2	of a Rigid			
		Body			
		Euler's			
	93	Equation of			
	2.5	Motion of a			
		Rigid Body			
		Hamilton's			
	10.1	Variational			
		Principle			
	10.2	Generalized			
		Coordinates			
	-	Calculating			
	10.3	Kinetic and			
		Potential			
		Energies in			
		terms of			
		Generalized			
		Coordinates			
		Lagrange's			
4		Equation of			
	10.4	Motion for			
		Conservative			
		Systems			
		Some			
	10.5	Applications			
	10.5	of Lagrange's			
		Equation			
		Conoralized			
		Momente			
	10.6	lanorable			
		Coordinates			
		coordinates			
	10.7	Forces of			
		Constraint:			

7

	Lagrange Multipliers				
10.8	D'Alembert's Principle: Generalized Forces				
10.9	The Hamiltonian Function: Hamilton's Equation				

QF-AQAC-03.02.01

V	كز الاعتماد مان الجودة	مـرک وض				

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
First Exam	20	the motion of systems of particles and including the equations of motion and the conservation laws of energy and momentum	SLO(1) & SLO(2)	Week 8 (23/3/2023)	First Exam
Second Exam	30	The principles of rotational motion, including torque, angular momentum, and the moment of	SLO(2)& SLO(3)	Week 12 (15/5/2023)	Second Exam

QF-AQAC-03.02.01

9

Π			inertia.		
	Final Exam	50	All course content	SLO(1) – SLO(9)	Final Exam

23 Course Requirements

White board and overhead projector.

Each student should have access to a computer & internet connection

24 Course Policies:

Attendance is mandatory. Students who record absences more than the legally acceptable limit **may** lose their chance to sit for the final exam of the course.

B- Absences from exams and submitting assignments on time:

The students are required to handle their responsibility and developpositive learning attitudes.

C- Health and safety procedures:

Follow the instructions regarding health and safety procedures in the university.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

The course is designed to provide students with learning opportunities. Group work and discussions accompanied with individual input and hard work are encouraged to fulfill the objectives of the course, whereas cheating and misbehavior are completely unacceptable.

E- Grading policy:

Invest your time in fruitful learning.

F- Available university services that support achievement in the course:

- ✓ E-learning resources
- ✓ Microsoft Teams
- ✓ Smart Class rooms

Computer facilities.

25 References:

مركـز الاعتماد وضمان الجودة

A- Required book (s), assigned reading and audio-visuals:

Analytical Mechanics" by Grant R. Fowles and George L. Cassiday, 7th Edition, 2005, Thomson/Brookscole

B- Recommended books, materials, and media:

Marion, J. B., and Thornton, S. T., Classical Dynamics, 5th ed., Brooks/Cole-Thomson Learning, Belmont, CA, 2004.

26 Additional information:

A set of problems for each topic will be assigned as homework. Solutions of these and other

Problems will be discussed in class.

Name of Course Coordinator: -: Ahmad Masadeh Signature: <i>Ahmad Masadeh</i> Date: -10-02-2023
Head of Curriculum Committee/Department:Signature:Signature:
Head of Department: Signature:
-
Head of Curriculum Committee/Faculty: Signature:
-
Dean: Signature: